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Abstract Most mathematical models of athletic training require the quantification
of training intensity and quantity or ‘dose’. We aim to summarize both the
methods available for such quantification, particularly in relation to cycle
sport, and the mathematical techniques that may be used to model the re-
lationship between training and performance.

Endurance athletes have used training volume (kilometres per week and/or
hours per week) as an index of training dose with some success. However,
such methods usually fail to accommodate the potentially important influ-
ence of training intensity. The scientific literature has provided some support
for alternative methods such as the session rating of perceived exertion, which
provides a subjective quantification of the intensity of exercise; and the heart
rate-derived training impulse (TRIMP) method, which quantifies the train-
ing stimulus as a composite of external loading and physiological re-
sponse, multiplying the training load (stress) by the training intensity (strain).
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Othermethods described in the scientific literature include ‘ordinal categoriza-
tion’ and a heart rate-based excess post-exercise oxygen consumption method.

In cycle sport, mobile cycle ergometers (e.g. SRM� and PowerTap�) are
now widely available. These devices allow the continuous measurement of the
cyclists’ work rate (power output) when riding their own bicycles during training
and competition.However, the inherent variability in power output when cycling
poses several challenges in attempting to evaluate the exact nature of a session.
Such variability means that average power output is incommensurate with the
cyclist’s physiological strain. A useful alternative may be the use of an exponen-
tially weighted averaging process to represent the data as a ‘normalized power’.

Several research groups have applied systems theory to analyse the responses
to physical training. Impulse-response models aim to relate training loads to
performance, taking into account the dynamic and temporal characteristics of
training and, therefore, the effects of load sequences over time. Despite the
successes of this approach it has some significant limitations, e.g. an excessive
number of performance tests to determine model parameters. Non-linear arti-
ficial neural networks may provide a more accurate description of the complex
non-linear biological adaptation process. However, such models may also be
constrained by the large number of datasets required to ‘train’ the model.

A number of alternative mathematical approaches such as the Perfor-
mance-Potential-Metamodel (PerPot), mixed linear modelling, cluster anal-
ysis and chaos theory display conceptual richness. However, much further
research is required before such approaches can be considered as viable al-
ternatives to traditional impulse-response models. Some of these methods
may not provide useful information about the relationship between training
and performance. However, they may help describe the complex physiologi-
cal training response phenomenon.

Scientists examining exercise training have
identified distinct roles for training volume, in-
tensity and frequency in the adaptation process.[1]

In order to optimize performance when working
with elite athletes, it is essential that the sports
coach has a thorough understanding of the re-
lationship between training and performance.
These relationships have been shown to be highly
individualized due to variation in factors such as
individual training background,[2] genetics[3] and
psychological factors.[4] In order to further this
understanding, a number of mathematical models
have been developed in an attempt to describe the
dynamic aspect of training and the consequences
of successive training loads over time.[4-6]

1. Quantification of Training

Most mathematical models of athletic training
require the quantification of training intensity

and quantity or ‘dose’. Ideally, this quantifica-
tion requires researchers to incorporate para-
meters for intensity, duration and frequency.
Endurance athletes have used training volume
(kilometres per week and/or hours per week) as
an index of training dose with some success.[7,8]

However, this index fails to accommodate the
potentially important influence of training inten-
sity. Therefore, a number of alternative methods
have been investigated.

1.1 Session Rating of Perceived Exertion

The rating of perceived exertion (RPE) pro-
vides one method of subjectively quantifying the
intensity of exercise.[9] Defined by the intensity of
discomfort or fatigue felt at a particular moment,
RPE has been shown to correlate well with inten-
sity of effort.[10] In order to provide an index of a
whole training session, Foster et al.[11] developed
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the session RPE (sRPE) scale as a modification of
the standard RPE scale. Rather than providing
an RPE score for a specific aspect (e.g. interval/
set) of an exercise session, sRPE aims to provide
an RPE for the session as a whole, i.e. to integrate
the myriad of exercise-intensity cues.[10] The
sRPE scale has been shown to be a reliable and
valid method of quantifying intensity during both
aerobic and resistance exercise when compared
with heart rate-based metrics.[10,12,13]

1.2 Ordinal Categorization

Training has also been categorized into or-
dinal levels based on differences in intensity.
Whilst this categorization has been arbitrary in
some instances,[14] this approach is commonly
based upon the relationship between a measured
variable, such as speed, and heart rate[15] or lac-
tate response.[2] Each category is then assigned an
arbitrary weighting coefficient that emphasizes
high-intensity training sessions. Being based
upon an individual’s physiological response and
assuming a non-linear response to increasing ex-
ercise intensity, these methods appear more sci-
entifically defendable. However, an element of
subjectiveness remains due to the arbitrary
weighting of intensity categories. Furthermore,
using heart rate in the process of training quan-
tification has a number of limitations. Irrespec-
tive of exercise intensity, heart rate may vary due
to factors such as cardiac drift,[16] changes in
temperature,[17] hydration status and body posi-
tion on the bicycle.[16]

1.3 Heart Rate Recovery and Training Impulse

Overcoming some of the above limitations,
Borresen and Lambert[18,19] have suggested that, as
indirect markers of autonomic function, heart rate
variability and, in particular, heart rate recovery
may offer practical ways of quantifying the phy-
siological effects of training. However, much fur-
ther work is required before these methods can be
shown to have practical application in the pre-
scription of optimal training programmes.[19]

Training impulse (TRIMP) quantifies the
training stimulus as a composite of external

loading and physiological response, multiplying
the training load (stress) by the training intensity
(strain).[20] Banister and Calvert’s[21] original
formula was modified by Morton et al.[22] to in-
clude a multiplicative factor that gave greater
weight to high-intensity training (equation 1):

TRIMP ¼ exercise duration �

fraction of heart rate reserve �

eðfraction of heart rate reserve � bÞ
ðEq: 1Þ

where e is Euler’s number, 2.718, and b is a con-
stant based on the blood lactate response during
incremental exercise and is equal to 1.92 in males
and 1.67 in females.

There are advantages to using the TRIMP
method, evidenced not least by the number of
researchers who have explored the use of this
metric.[23-25] It is relatively easy to calculate TRIMP
with an inexpensive and commonly used heart
rate monitor. This approach produces a single
number that represents the training stimulus pro-
vided by the whole session. However, the original
Banister formulation of the TRIMP concept failed
to take into account the energy system-specific
effects of training intensity. Whilst, to some ex-
tent, Morton’s weighting factor overcomes this
shortcoming, it is still limited in assuming a
fixed relationship between heart rate and lactate
responses; an assumption that Hurley et al.[26]

dispute.

1.4 Excess Post-Exercise Oxygen Consumption

Whilst sRPE and TRIMP have received sup-
port in the scientific literature, both methods are
limited by a lack of underpinning physiological
theory. In order to quantify the homeostatic dis-
turbance associated with training, traditional
physiological measures such as oxygen consump-
tion, heart rate and blood lactate may be obtained.
However, these latter measures only reflect a
momentary response to exercise. Blood lactate
concentration, measured during or post-exercise,
might also depend on sampling site. In contrast,
the measurement of excess post-exercise oxygen
consumption (EPOC) has been suggested to re-
flect the cumulative response of the body to a
whole training session. As with the measurement
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of oxygen uptake and lactate response, EPOC
assessment is laboratory-based, expensive, time-
consuming and, therefore, inappropriate for reg-
ular assessment.Recognizing this limitation, Rusko
et al.[27] developed a heart rate-based EPOC (HR-
based EPOC) prediction model, which is mathe-
matically described as equation 2:

EPOCðtÞ ¼ fðEPOCðt�1Þ; % V
:
O2max; DtÞ ðEq: 2Þ

EPOC at time t (EPOC(t)) is estimated using the
variables of current intensity (%

.
VO2max), dura-

tion of exercise (time between two sampling
points [Dt]) and EPOC in the previous sampl-
ing point (EPOC(t–1)). This model has been vali-
dated in a group of 32 healthy adult subjects,
HR-based EPOC correlating well with measured
EPOC (r = 0.89).[27] Mean absolute error values
for the HR-based EPOC, when compared with
the measured EPOC values, were 9.4, 14.0 and
16.9mL/kg for 40% and 70% constant load ex-
ercise and for maximal incremental exercise, re-
spectively. However, despite the attractiveness of
this model, the calculation is relatively complex,
currently requiring proprietary software and
hardware (e.g. Suunto� t6 heart rate monitor).
In addition, the model has only been validated in
one study, in which only short-duration exercise
(2 · 10min) was investigated.[27]

1.5 Power Output

Mobile cycle ergometers (e.g. SRM� and
PowerTap�) are now widely available and allow
the continuous measurement of the cyclists’ work
rate (power output) when riding their own bi-
cycles during training and competition. Indeed,
in one study of these devices, the authors con-
cluded, ‘‘measures with such low error might
be suitable for tracking the small changes in
competitive performance that matter to elite cy-
clists.’’[28] Consequently, these devices have been
widely used by elite cyclists during training and
competition. Thus, with such instrumented bi-
cycles it is now possible to examine the completed
training and race performances and associated
physiological responses in detail. An example of
typical data collected during a training bout is
shown in figure 1. This ability to accurately

quantify the mechanical work of training, as well
as the detail and extent of these data, makes cy-
cling unique in allowing such insight into the de-
mands of sporting preparation and competition.
However, it can also be seen that the inherent
variability in power output during training poses
several challenges in attempting to evaluate the
exact nature of any training session.

As a result of the difficulties in interpretation
of power output data, the current practice for
many athletes and coaches is to simply visually
inspect individual training sessions (e.g. as pre-
sented in figure 1). In this way, general features of
the session may be identified, such as the point at
which the highest power output was achieved, the
number of intervals completed or the level of
power output variation. Clearly, such methods
fail to allow full analysis of the available data. An
alternative approach is to evaluate the amount of
time spent within given power ‘bins’ or ‘zones’
using a histogram. Ebert et al.[29] provided a
graphical comparison of two types of women’s
World Cup cycle road races by evaluating the
percentage of total race time spent within four
power bins (0–100W, 100–300W, 300–500W
and >500W). Recognizing the important influ-
ence of body mass on cycling performance, Ebert
et al.[30] provided similar comparisons of power
output per unit body mass (W/kg) in a group of
professional male stage race cyclists. Although
simple, this method is excellent for the purpose of
overall session comparisons.[31] However, the histo-
gram approach is limited by its inability to recogn-
ize separate efforts within any given power zone.
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Fig. 1. Example of training power output data measured with an
SRM� crank system.
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For example, this method is unable to differentiate
between a single 5-minute effort at 350W and five
1-minute intervals at the same intensity, although
the effect of these two bouts of exercise on train-
ing outcomes may be very different.[32]

1.5.1 Average Power

Power output provides a direct and immediate
measure of work rate, as opposed to the athlete’s
perceptual or cardiovascular response to that
exercise intensity. However, as discussed in sec-
tion 1.5, the stochastic nature of work rate when
cycling outdoors[33] makes interpretation of in-
formation from on-bike power meters proble-
matic. A simple approach is to calculate mean or
average power over the duration of the training
bout. However, average power is not necessarily
commensurate with the cyclist’s physiological
strain unless the training session is constant
power in nature. For example, a maximum effort
in a 1-hour time-trial over flat terrain may result
in a mean power of 299W and require little var-
iation in power output over the course of the race
(figure 2a). In contrast, a maximum effort re-
quiring marked changes of pace, e.g. in a criter-
ium-type race or a hilly time-trial, may result in
the rider being able to produce a much lower
average of only 260W (figure 2b). Future re-
search should seek to describe in detail what the
differences in overall power are for variable ver-
sus constant power cycling.

1.5.2 Normalized Power

Recognizing the limitations of the average
power approach, Coggan[34] has proposed using
an exponentially weighted averaging process to
represent the data. Data are smoothed using a
30-second moving average (because many physio-
logical processes [e.g. V

:
O2, heart rate] respond to

changes in exercise intensity with a time-constant
of ~30 s) before being raised to the fourth power
(derived from a regression of blood lactate con-
centration against exercise intensity). Finally, the
transformed values are averaged and the fourth
root taken, yielding a ‘normalized power’. Using
this process, it is theoretically possible to make
more direct comparisons between different types

of training sessions. In the above example, for
instance, the time-trial effort normalized remains
about 299W (figure 2a), but the variable effort of
260W normalized becomes 291W (figure 2b).
Whilst this method has attracted substantial in-
terest from the cycling community, it has as yet
received very little critical evaluation from the
scientific community.[35]

1.6 Power Spectrum Analysis

The ability to move forward during cycling
requires energy to overcome environmental resis-
tance (principally wind, rolling and gravitational
resistance[36]). Thus, variation in these resistive
forces whilst cycling results in predictable changes
in power output. However, beyond these physical
relationships, Hu et al.[37] have suggested that
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Fig. 2. 30-second rolling average for power for a flat time-trial (a)
and a criterium road race (b) performed by the same cyclist. Note
that average power (dashed line) varies widely between efforts,
whilst the normalized power (solid line) is similar, indicating an
equivalent physiological cost for both efforts.
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‘other’ fluctuations in data from biological systems
represent ‘noise’, this being the result of either
random processes or external input to the system.
If this noise was the result of random factors, a
power spectrum analysis would reveal a Gaussian
white noise signal (i.e. where all frequencies have
an equal power weighting).[38] Tucker et al.[39] used
a discrete Fourier transform (DFT) in order to eval-
uate the power spectrum of the power output of
amateur cyclists. A DFT expresses data as a sum
of sinusoidal waveforms of varying frequency
(figure 3), with the spectrum of the signal being
the signal that describes the way in which the
amplitudes and phases of these waveforms
change with frequency. Therefore, at a specific
frequency it is possible to obtain the measure of
the contribution that a specific waveform will
make to the signal. Using this method, Tucker et
al.[39] demonstrated the presence of dominant
frequency peaks (at distance cycles of ~2.5, ~6,
~12 and ~21km) during a laboratory-based 20km
time-trial, suggesting that the observed power
output fluctuations were in fact non-random.
Tucker et al.[39] proposed that the fluctuations in
power output were the result of the regulation of
power output by intrinsic biological control pro-
cesses. Differing dominant frequency spikes were
also observed when analysing the frequency
spectrum of individual components of the time-
trial (i.e. beginning, middle and end) and the trial

as a whole. Each of these dominant spikes was
suggested to represent a different control system
or component of an overall system. It would
be interesting to investigate if such effects are
repeated in a larger dataset and over longer per-
iodicities (e.g. days, months) than those con-
sidered by these authors.

Tucker et al.[39] also investigated the level of
self-similarity in the time-trial power output signal
of cyclists using a fractal analysis. In this context,
the concept of self-similarity refers to the property
that parts of the fractal signal are similar to the
whole. Despite the large variability in power out-
put generated both inter- and intra-trial, these au-
thors found that the fractal dimension of the power
spectrum was similar (1.56–1.9) in all subjects.
Thus, despite the irregular power spectrum signal,
there would appear to be a degree of self-similarity
between parts of the signal and the signal as a
whole. Tucker et al.[39] suggested that this signal
concordance indicates a similar overall controlling
process present in each cyclist and throughout each
time-trial. Further research should seek to estab-
lish whether such findings reflect real physiological
phenomena or, instead, if they simply reflect the
widespread applicability of fractals.

2. Modelling the Relationship between
Training and Performance

Models may be purely empirical or based
on a detailed appreciation of the underlying
structure.[20] Clearly, these underlying structures
can be extremely complex. Whilst mathematical
models are based on abstractions of the real sys-
tem, the question remains of how much under-
lying structure to incorporate into models of
training and performance.

2.1 Impulse-Response Models

Building upon early investigations by Banister
et al.,[4] several research groups have applied
systems theory to analyse the responses to physi-
cal training.[2,40,41] This approach attempts to ab-
stract a dynamic process into amathematicalmodel,
the system being characterized by at least one
input and one output related by a mathematical
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Fig. 3. An example of a Fourier transformation expressing the data
as a sum of sinusoidal waveforms of varying frequency. In this ex-
ample, three sinusoidal waveforms were added together to create a
power signal that looks similar to the power output data observed
during a 20 km time-trial (reproduced from Tucker et al.,[39] with
permission).

838 Jobson et al.

ª 2009 Adis Data Information BV. All rights reserved. Sports Med 2009; 39 (10)



‘transfer function’.[42] This function follows the
general form (equation 3):

Model performance ¼ ðfitness from trainingmodelÞ �

Kðfatigue from trainingmodelÞ

ðEq: 3Þ

where K is the constant that adjusts for the
magnitude of the fatigue effect relative to the fit-
ness effect.[20] Calvert et al.[14] presented a simple
model whereby a single training impulse elicited
two fitness responses that would increase perfor-
mance and a fatigue response that would decrease
performance. Thus, ‘impulse-response’ models
aim to relate training loads to performance, tak-
ing into account the dynamic and temporal
characteristics of training and, therefore, the
effects of load sequences over time.

This model has been presented in a variety of
mathematical forms, most notably the differ-
ential equations of Calvert et al.,[14] Morton
et al.,[22] Busso et al.[43] Fitz-Clarke et al.[44] and
Busso et al.[45] have built upon these formulations
to present influence curves that provide a clear
picture of how a specific training session affects
performance at a future time. Indeed, Busso
et al.[45] found that the positive and negative ‘in-
fluences’ (PI and NI) were actually closer to the
variations in performance than the values calcu-
lated by the positive and negative functions (PF
and NF) produced in the underlying mathema-
tical model itself (i.e. where PF and NF represent
an immediate fitness gain and PI and NI re-
present a more biologically plausible delayed fit-
ness gain).

A variety of data types have been used as input
in impulse-response type models. When predict-
ing the performance of two non-elite runners,
Morton et al.[22] quantified training impulse using
TRIMPs. In one subject, agreement between
measured and predicted performance was ex-
cellent (R2 = 0.96), whilst in the second it was less
impressive (R2 = 0.71). Through the utilization of
ordinal categorization of training, Mujika et al.[2]

identified weaker relationships, with the explained
variation in performance ranging from R2 = 0.45
to R2 = 0.85 in a group of elite swimmers. One
proposed explanation for this variability is that
model parameters change over time (i.e. with

training). As such, Busso et al.[46] compared both
a time-varying and a time-invariant model, with
R2 = 0.88 and R2 = 0.68, respectively. However,
the use of the model and its parameters to predict
the responses to future training is precluded
with the time-varying approach, unless the para-
meters change in a predictable manner.[20]

Impulse-response modelling provides pertinent
information about interindividual differences and
permits the construction of individualized train-
ing programmes[47] (e.g. TRIMP, TrainingPeaks
WKO+ and RaceDay software). However, both
the original Banistermodel and its extensions have
some significant limitations. Taha and Thomas[20]

argued that the model does not correspond with
contemporary understanding of physiological
mechanisms, requires an excessive number of per-
formance tests to determine model parameters,
and is unable to distinguish the specific effects of
different training impulses. Furthermore, inter-
study and inter-subject variability in parameter
estimates limits the ability to apply a generic
version of the model.

2.2 Neural Networks

Traditional impulse-response models such as
those described in section 2.1 are based on linear
mathematical concepts such as regression analy-
sis and linear differential equations. However,
because the adaptation of a biological system
leads to changes in the system itself, biological
adaptation is actually a complex non-linear pro-
blem.[48] For this reason, Edelmann-Nusser
et al.[48] used a non-linear multi-layer perceptron
neural network to model the performance of an
Olympic-level swimmer. This model produced a
‘prediction error’ of just 0.04%.

One problem associated with neural networks
is that they typically require many datasets to
‘train’ the model. Having ten input neurons, two
hidden neurons and one output neuron, training
of the model used by Edelmann-Nusser et al.[48]

required 40 datasets (this number increasing to
60 with the addition of just one neuron in the
hidden layer). Thus, it may be some time before
such a model becomes useful for any given ath-
lete. Edelmann-Nusser et al.[48] overcame this
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problem by training the model with the datasets
of another athlete. Ultimately, this method
proved to be successful, but, as noted by the au-
thors, it may have been fortuitous that the
adaptive behaviour of both athletes was similar.
Although the predictive power is impressive,
Hellard et al.[47] have cautioned that the major
weakness of neural network models is that they
don’t explicitly identify causal relationships,
i.e. they function as a ‘black box’.

2.3 Dynamic Meta-Model

The Performance-Potential-Metamodel (Per-
Pot) described by Perl[6] simulates the interaction
between load and performance interaction by
means of antagonistic dynamics. Hellard et al.[47]

highlighted the conceptual richness of this model
in that it accounts for the collapse effect in the
wake of training overload, the atrophy associated
with detraining and the long-term behaviour of
the training-performance relationship.

Similar to the Banister model, the basic con-
cept of the PerPot model is that of antagonism
(see figure 4). Each load impulse feeds a strain
potential as well as a response potential. These
buffer potentials in turn influence the perfor-
mance potential, where the response potential
raises the performance potential (delayed by the
delay in response flow) and the strain potential

reduces the performance potential (delayed by
the delay in strain flow). If the strain potential is
overloaded an overflow is produced that has a
further negative impact on performance poten-
tial. Whilst this model is attractive, to the au-
thors’ knowledge no researcher has yet provided
a critical validation.

2.4 Multiple Regression and Mixed Linear
Modelling

As described above (section 2.1), one of the
problems associated with the Banister model is
the need for a very large number of datapoints
per parameter. To ensure a stable solution in a
regression analysis, Stevens[49] recommended a
minimum of 15 observations per predictor vari-
able. To avoid these difficulties multiple regres-
sion modelling has been suggested as a viable al-
ternative, especially when relatively few repeated
measurements are available for multiple sub-
jects.[47] This method allows the integration
of training loads as independent variables and
can take the effects of load sequences over time
into account. Mujika et al.[50] used a stepwise re-
gression to create a model for the relationship
between training and performance, reporting a
very close match with the Banister model.

Mixed linear modelling can be applied to re-
peated measures data from unbalanced designs
(i.e. multiple independent variables with un-
balanced multiple levels on each factor). Unlike
the Banister model, which produces a personal
model for each subject, mixed models accom-
modate subject heterogeneity by allowing para-
meters to vary between individuals as a model of
population behaviour is constructed.[5] There-
fore, this type of analysis can also cope with the
mixture of random and fixed effects that occur
with ‘real-world’ data.[51] For example, perfor-
mance-related data might be influenced by ran-
dom fluctuations in environmental factors as well
as systematic changes to training that are intro-
duced by the coach. In general, all data are used
to construct the part of the model common to the
whole subject population whilst only the observa-
tions specific to each individual are used to con-
struct the personal part of the model. The relative

Load

Response
potential

Strain
potential

DS DR

Performance potential

+

++

−

Fig. 4. Antagonistic structure of the Performance-Potential-Meta-
model. DR = delay in response flow; DS = delay in strain flow.
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influence of each part of the model will therefore
depend on the available data with a stronger
contribution coming from the population data
when the individual data is poor and vice versa.[5]

Mixed linear modelling can also cope with miss-
ing data and ‘nested’ (hierarchical) models. A
hierarchical model could be relevant to real-
world research when, for example, subjects can-
not be considered as being mutually exclusive,
e.g. athletes who train with each other as part of
a squad.

Mixed linear modelling has been employed to
analyse psychological,[52] micro-array[53] and
agricultural[54] data. However, this type of anal-
ysis has been little-used in the sport and exercise
sciences. Indeed, where it has been used, it would
not seem to have a strong predictive ability.
Avalos et al.[5] found that mixed modelling did
describe the relationship between training and
performance but that the average coefficient of
determination was just 0.38. Clearly, further
work is necessary to ascertain the applicability of
mixed modelling in a sporting context. An im-
portant issue, which needs careful consideration,
is how the most appropriate covariance structure
of repeated measures is identified and applied in
mixed linear modelling.

2.5 Cluster Analysis

Cluster analysis has been used in a wide range
of sporting contexts from the detection of banned
substance use[55] to the analysis of weight transfer
during a golf swing.[56] Indeed, cluster analysis
may provide a useful tool in identifying group re-
sponses to training. Avalos et al.[5] investigated the
relationship between short-, mid- and long-term
training periods and performance using principal
component and cluster analyses. Two principal
component factors were identified with the clus-
ter analysis providing statistical confirmation of
the four distinct training responses based on these
two components. The four training clusters
identified a varying response (i.e. a combination
of positive, negative or neutral reactions) to each
of the three training periods independent of
training load differences between subjects.

2.6 Non-Linear Dynamics and Chaos Theory

Chaos theory is one of a set of approaches for
studying nonlinear phenomena. Specifically, chaos
is a phenomenon that appears locally unpre-
dictable but is in fact globally stable, exhibiting
clear boundaries and displaying great sensitivity
to initial conditions. A prime example of chaos in
the human body is found in the beating of the
heart.[57] The normal cardiac rhythm appears
periodic. However, sensitive instrumentation has
revealed that the normal heart rhythm shows
small variability in the interval between beats.[58]

This signal variance results from the interplay of
the sympathetic and parasympathetic nervous
systems, ultimately creating significant signal di-
versity and a complex and unpredictable heart
rhythm.[59] The advantage of such aperiodicity is
that the system is better equipped to adapt to
changing demands. The heart also displays two
additional characteristics of chaotic systems:
the emergence of order[60] and the existence of
strange attractors.[61]

While chaos theory has been applied to a range
of biological phenomena,[62,63] to the authors’
knowledge, this approach has yet to be consid-
ered in the context of training theory. From the
preceding discussions, it is clear that the relation-
ship between the multitudinous factors involved
in training development is a dynamic non-linear
problem. However, it is also probable that the
constantly varying interactions between these
factors create a predominantly stable oscillating
system. The use of chaos theory to identify the
key attractors (and the relationship between these
attractors) in such a system might further inform
our understanding of both individual and group
training responses. Furthermore, chaos theory
might describe the loss of system control asso-
ciated with overtraining, a scenario analogous to
the extensive studies of atrial fibrillation carried
out using chaos theory.[64,65]

3. Conclusions

In this review, we have discussed the methods
available to quantify training impulse in cycle
sport and the methods available to model the
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relationship between this training impulse and
performance. Many of the methods discussed are
applicable across a wide range of sports; how-
ever, cycling is one of the few sports able to take
advantage of the rich data provided by the conti-
nuous measurement of work rate (power output).

Individual training/competition bouts may be
quantified using methods such as sRPE, TRIMP
andHR-based EPOC. Themeasurement of power
output enables sessions to be quantified in a num-
ber of ways that include histogram approaches,
mean power output and ‘normalized power’ output.
While different (useful) information is conveyed
by each approach, further research should seek to
provide a direct comparison of these methods.

A number of mathematical approaches have
been used to analyse the responses to physical
training. The use of impulse-response models has
received substantial support in the scientific lit-
erature, whilst alternative approaches such as the
PerPot metamodel and mixed linear modelling
have yet to be fully explored. The type of analysis
that a researcher/coach uses will depend upon the
number of datapoints available, with the more
complex models requiring more measurements
being made over time. It is likely that some of the
methods discussed here will not provide useful
information when describing the relationship
between training and performance. However,
it is probable that some combination of these
approaches, rather than any single model, will
provide the best description of the complex phy-
siological training response phenomenon.
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